Yao Y, Ciais P, Joetzjer E, Li E, Zhu L, Wang Y, Frankenberg C, and Viovy N (2024). The impacts of elevated CO₂ on forest growth, mortality, and recovery in the Amazon rainforest. Earth System Dynamics 15(3): 763-778. DOI
Liu K, Wang Y, Magney T, and Frankenberg C (2024). Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem. Biogeosciences 21(6): 1501-1516. DOI
Yao Y, Humphrey V, Konings AG, Wang Y, Yin Y, Holtzman N, Wood JD, Bar-On Y, and Frankenberg C (2024). Investigating diurnal and seasonal cycles of vegetation optical depth retrieved from GNSS signals in a broadleaf forest. Geophysical Research Letters 51(6): e2023GL107121. DOI
Holtzman N, Wang Y, Wood JD, Frankenberg C, and Konings AG (2023). Constraining plant hydraulics with microwave radiometry in a land surface model: Impacts of temporal resolution. Water Resources Research 59(11): e2023WR035481. DOI
Braghiere RK, Wang Y, Gagné-Landmann A, Brodrick PG, Bloom AA, Norton AJ, Ma S, Levine P, Longo M, Deck K, Gentine P, Worden JR, Frankenberg C, and Schneider T (2023). The importance of hyperspectral soil albedo information for improving Earth system model projections. AGU Advances 4(4): e2023AV000910. DOI
Liang X, Wang D, Ye Q, Zhang J, Liu M, Liu H, Yu K, Wang Y, Hou E, Zhong B, Xu L, Lv T, Peng S, Lu H, Sicard P, Anav A, and Ellsworth DS (2023). Stomatal responses of terrestrial plants to global change. Nature Communications 14(1): 2188. DOI
Doughty R, Kurosu T, Parazoo N, Köhler P, Wang Y, Sun Y, and Frankenberg C (2022). Global GOSAT, OCO-2 and OCO-3 solar induced chlorophyll fluorescence datasets. Earth System Science Data 14(4): 1513-1529. DOI
Konings AG, Saatchi SS, Frankenberg C, Keller M, Leshyk V, Anderegg WRL, Humphrey V, Matheny AM, Trugman AT, Sack L, Agee E, Barnes ML, Binks O, Cawse-Nicholson K, Christoffersen BO, Entekhabi D, Gentine P, Holtzman NM, Katul GG, Liu Y, Longo M, Martinez-Vilalta J, McDowell N, Meir P, Mencuccini M, Mrad A, Novick KA, Oliveira RS, Siqueira P, Steele-Dunne SC, Thompson DR, Wang Y, Wehr R, Wood JD, Xu X, and Zuidema PA (2021). Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology 27(23): 6005-6024. DOI
Köhler P, Fischer WW, Rossman GR, Grotzinger JP, Doughty R, Wang Y, Yin Y, and Frankenberg C (2021). Mineral luminescence observed from space. Geophysical Research Letters 48(19): e2021GL095227. DOI
Braghiere RK, Wang Y, Doughty R, Souza D, Magney T, Widlowski J, Longo M, Bloom AA, Worden J, Gentine P, and Frankenberg C (2021). Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation Earth System model. Remote Sensing of Environment 261: 112497. DOI
Potkay A, Trugman AT, Wang Y, Venturas MD, Anderegg WRL, Mattos C, and Fan Y (2021). Coupled whole-tree optimality and xylem-hydraulics explain dynamic biomass partitioning. New Phytologist 230(6): 2226-2245. DOI
Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang Y, and Tai X (2019). The impact of rising CO₂ and acclimation on theresponse of US forests to global warming. Proceedings of the National Academy of Sciences of the United States of America 116(51): 25734–25744. DOI
Trugman AT, Anderegg LDL, Sperry JS, Wang Y, Venturas MD, and Anderegg WRL (2019). Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change.
Global Change Biology 25: 4008–4021. DOI
Yu K, Goldsmith GR, Wang Y, and Anderegg WRL (2019). Phylogenetic and biogeographic controls of plant nighttime stomatal conductance. New Phytologist 222(4): 1778–1788. DOI
Du G, Feng F, Wang Y, and Tyree MT (2019). Do nano-particles cause recalcitrant vulnerability curves in Robinia? Testing with a four-cuvette Cochard rotor and with water extraction curves. Tree Physiology 39(1): 156–165. DOI
Love DM, Venturas MD, Sperry JS, Brooks PD, Pettit JL, Wang Y, and Anderegg WRL (2019). Dependence of aspen stands on a subsurface water subsidy: Implications for climate change impacts. Water Resource Research 55(3): 1833–1848. DOI
Venturas MD, Sperry JS, Love DM, Frehner EH, Allred MG, Wang Y, and Anderegg WRL (2018). A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought. New Phytologist. 220(3): 836–850. DOI
Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, and Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.
Plant Cell & Environment 40(6): 816–830. DOI
Sperry JS, Wang Y, Wolfe BT, Mackay DS, Anderegg WRL, McDowell NG, and Pockman WT (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist. 212(3): 577–589. DOI
Liu J, Fu P, Wang Y, and Cao K (2012). Different drought-adaptation strategies as characterized by hydraulic and water-relations traits of evergreen and deciduous figs in a tropical karst forest. Plant Science Journal 30(5): 484-493. DOI