Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction.
- 影响因子:9.445
- DOI码:10.1007/s11426-020-9934-0
- 发表刊物:Sci. China Chem.
- 关键字:P-doped Cu catalysts, C2+ products, *CO adsorption, CO2 electroreduction
- 摘要:<p>Electronic structure engineering is a powerful method to tailor the behavior of adsorbed intermediates on the surface of catalysts, thus regulating catalytic activity towards CO2 electroreduction. Herein, we prepared a series of P-doped Cu catalysts for CO2 electroreduction into multi-carbon (C2+) products by regulating the surface electronic structure of Cu. The introduction of P could stabilize the surface Cu delta+ species, enhancing the activity for C2+ products via adjusting the adsorbed strength of the CO intermediates (*CO). When the molar ratio of P to Cu was 8.3%, the catalyst exhibited a Faradaic efficiency of 64% for C2+ products, which was 1.9 times as high as that (33%) for Cu catalysts at the applied current density of 210 mA cm(-2). Notably, at the applied current density of 300 mA cm(-2), the P-doped Cu catalyst with the molar ratio of P to Cu of 8.3% exhibited the highest partial current density for C2+ products of 176 mA cm(-2), whereas the partial current density for C2+ products over the Cu catalyst was only 84 mA cm(-2). Mechanistic studies revealed that modulating the molar ratios of P to Cu regulated the adsorbed strength of *CO. A moderate adsorbed strength of *CO induced by appropriate P doping was responsible for the facilitated C-C coupling process.p>
- 合写作者:Cheng Wang, Han Zheng
- 第一作者:Xiangdong Kong
- 通讯作者:Zhigang Geng, Jun Bao, Jie Zeng
- 文献类型:SCI
- 卷号:64
- 期号:7
- 页面范围:1096-1102
- 是否译文:否
- 发表时间:2021/01/11
- 发布期刊链接:https://link.springer.com/article/10.1007/s11426-020-9934-0